Equine odontoclastic tooth resorption and hypercementosis (EOTRH): microspatial distribution of trace elements in hypercementosis-affected and unaffected hard dental tissues

  • Shaik, I. et al. Functional role of inorganic trace elements on enamel and dentin formation: A review. J. Pharm. Bioallied Sci. 13, S952–S956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitturi, R., Baddam, V. R., Prasad, L., Prashanth, L. & Kattapagari, K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Heal. Sci. 4, 75 (2015).

    Article 

    Google Scholar
     

  • Kim, H. E. & Hong, J. H. The overview of channels, transporters, and calcium signaling molecules during amelogenesis. Arch. Oral Biol. 93, 47–55 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora, M. & Austin, C. Teeth as a biomarker of past chemical exposure. Curr. Opin. Pediatr. 25, 261–267 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arzate, H., Zeichner-David, M. & Mercado-Celis, G. Cementum proteins : Role in periodontium formation and regeneration. Periodontol. 2000(67), 211–233 (2015).

    Article 

    Google Scholar
     

  • Reynard, B. & Balter, V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 4–16 (2014).

    Article 

    Google Scholar
     

  • Rahman, M. T., Hossain, A., Pin, C. H. & Yahya, N. A. Zinc and metallothionein in the development and progression of dental caries. Biol. Trace Elem. Res. 187, 51–58 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Austin, C. et al. Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci. Rep. 6, 1–11 (2016).

    Article 

    Google Scholar
     

  • Moss, M. E., Lanphear, B. P. & Auinger, P. Association of dental caries and blood lead levels. JAMA 281, 2294–2298 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora, M. et al. Cumulative lead exposure and tooth loss in men: The normative aging study. Environ. Health Perspect. 117, 1531–1534 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arora, M., Weuve, J., Schwartz, J. & Wright, R. O. Association of evironmental cadmium exposure with pediatric dental caries. Environ. Health Perspect. 116, 821–825 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inonu, E., Hakki, S. S., Kayis, S. A. & Nielsen, F. H. The association between some macro and trace elements in saliva and periodontal status. Biol. Trace Elem. Res. 197, 35–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herman, M. et al. Essential and toxic metals in oral fluid: A potential role in the diagnosis of periodontal diseases. Biol. Trace Elem. Res. 173, 275–282 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smedley, R. C., Earley, E. T., Galloway, S. S., Baratt, R. M. & Rawlinson, J. E. Equine odontoclastic tooth resorption and hypercementosis: histopathologic features. Vet. Pathol. 52, 903–909 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehrl, S., Schröder, W., Müller, C., Staszyk, C. & Lischer, C. Radiological prevalence of equine odontoclastic tooth resorption and hypercementosis. Equine Vet. J. 50, 481–487 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Earley, E. T. et al. Hematologic, biochemical, and endocrine parameters in horses with tooth resorption and hypercementosis. J. Vet. Dent. 34, 155–160 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sykora, S. et al. Isolation of Treponema and Tannerella spp. from equine odontoclastic tooth resorption and hypercementosis related periodontal disease. Equine Vet. J. 46, 358–363 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry, T. J., Puchalski, S. M., Arzi, B., Kass, P. H. & Verstraete, F. J. M. Radiographic evaluation in clinical practice of the types and stage of incisor tooth resorption and hypercementosis in horses. Equine Vet. J. 49, 486–492 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Earley, E. & Rawlinson, J. T. A new understanding of oral and dental disorders of the equine incisor and canine teeth. Vet. Clin. North Am. Equine Pract. 29, 273–300 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pearson, A. M., Mansfield, G., Conaway, M. & Koput, K. Associated risk factors of equine odontoclastic tooth resorption and hypercementosis. AAEP Proc. 59, 65–70 (2013).


    Google Scholar
     

  • Kalashnikov, V. et al. The total content of toxic elements in horsehair given the level of essential elements. Environ. Sci. Pollut. Res. 26, 24620–24629 (2019).

    Article 
    CAS 

    Google Scholar
     

  • van der Merwe, D. et al. Evaluation of hair analysis for determination of trace mineral status and exposure to toxic heavy metals in horses in the Netherlands. J. Vet. Diagn. Investig. 34, 1–6 (2022).


    Google Scholar
     

  • Arora, M. et al. Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels. PLoS One 9, e97805 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, C., Richardson, C., Smith, D. & Arora, M. Tooth manganese as a biomarker of exposure and body burden in rats. Environ. Res. 155, 373–379 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andra, S. S., Austin, C. & Arora, M. Tooth matrix analysis for biomonitoring of organic chemical exposure: Current status, challenges, and opportunities. Environ. Res. 142, 387–406 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. M. et al. Permanent signatures of birth and nursing initiation are chemically recorded in teeth. J. Archaeol. Sci. 140, 105564 (2022).

    Article 

    Google Scholar
     

  • Rawlinson, J. & Carmalt, J. L. Extraction techniques for equine incisor and canine teeth. Equine Vet. Educ. 26, 657–671 (2014).

    Article 

    Google Scholar
     

  • Arora, M. et al. Fetal and postnatal metal dysregulation in autism. Nat. Commun. 8, 1–10 (2017).

    Article 

    Google Scholar
     

  • Niedzwiecki, M. M. et al. A multimodal imaging workflow to visualize metal mixtures in the human placenta and explore colocalization with biological response markers. Metallomics 8, 444–452 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrock, P., Lüpke, M., Seifert, H. & Staszyk, C. Three-dimensional anatomy of equine incisors: Tooth length, enamel cover and age related changes. BMC Vet. Res. 9, 1 (2013).

    Article 

    Google Scholar
     

  • Mitchell, S. R. Structure of normal cementurn of peripheral structure equine cheek teeth. J. Vet. Dent. 20, 199–208 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahara, N. Development of coronal cementum in hypsodont horse cheek teeth. Anat. Rec. 297, 716–730 (2014).

    Article 

    Google Scholar
     

  • Abdel-Aziz, A. & Amin, M. M. EGFR, CD10 and proliferation marker Ki67 expression in ameloblastoma: Possible role in local recurrence. Diagn. Pathol. 7, 14 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, C. C., Siar, C. H. & Shanmuhasuntharam, P. Immunoexpression of BRAF, EGFR and CD10 in ameloblastoma. Malays. J. Pathol. 44, 19–28 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Clases, D. & Gonzalez de Vega, R. Facets of ICP-MS and their potential in the medical sciences—Part 1: fundamentals, stand-alone and hyphenated techniques. Anal. Bioanal. Chem. 414, 7337–7361 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pamphlett, R., Doble, P. A. & Bishop, D. P. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One 16, e0246748 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pamphlett, R., Satgunaseelan, L., Kum Jew, S., Doble, P. A. & Bishop, D. P. Elemental bioimaging shows mercury and other toxic metals in normal breast tissue and in breast cancers. PLoS ONE 15, e0228226 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, N. Y. & Yang, M. H. Metabolic reprogramming and epithelial-mesenchymal plasticity: Opportunities and challenges for cancer therapy. Front. Oncol. 10, 1–13 (2020).

    CAS 

    Google Scholar
     

  • Hole, S. L. & Staszyk, C. Equine odontoclastic tooth resorption and hypercementosis. Equine Vet. Educ. 30, 386–391 (2018).

    Article 

    Google Scholar
     

  • Schrock, P., Lüpke, M., Seifert, H. & Staszyk, C. Finite element analysis of equine incisor teeth. Part 2: Investigation of stresses and strain energy densities in the periodontal ligament and surrounding bone during tooth movement. Vet. J. 198, 590–598 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staszyk, C., Bienert, A., Kreutzer, R., Wohlsein, P. & Simhofer, H. Equine odontoclastic tooth resorption and hypercementosis. Vet. J. 178, 372–379 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • De Water, E. et al. Early-life dentine manganese concentrations and intrinsic functional brain connectivity in adolescents: A pilot study. PLoS One 14, e0220790 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, J. A. et al. Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ. Int. 108, 299–308 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modabbernia, A. et al. Early-life metal exposure and schizophrenia: A proof-of-concept study using novel tooth-matrix biomarkers. Eur. Psychiatry 36, 1–6 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charadram, N. et al. Structural analysis of reactionary dentin formed in response to polymicrobial invasion. J. Struct. Biol. 181, 207–222 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, H. H., Vogt, S., Eastgate, H. & Lay, P. A. A link between copper and dental caries in human teeth identified by X-ray fluorescence elemental mapping. J. Biol. Inorg. Chem. 13, 303–306 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brockhaus, J. et al. In vitro compression model for orthodontic tooth movement modulates human periodontal ligament fibroblast proliferation, apoptosis and cell cycle. Biomolecules 11, 932 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, T., Xie, Y., Wen, X., Zhao, N. & Shen, G. Establishment of in vitro three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp. Ther. Med. 20, 3174–3184 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar